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A method for calculating transonic potential flow past a multi-element aerofoil 
configuration is presented. The method is a hybrid method that is based upon a 
compressible-flow panel method, valid for subcritical flow, and a finite-difference 
method that is suitable for supercritical flow calculations. The effectiveness of the 
proposed method is demonstrated, first by application to a single aerofoil and then 
to a three-element aerofoil. 

1. Introduction 
In a recent paper, Hill, Riley & Morton (1968) have described a boundary- 

integral, or panel, method of solution of the two-dimensional potential equation for 
compressible flow. The method is, in principle, directly analogous to the widely used 
panel methods for incompressible potential flow (Hess 1973 ; Hess t Smith 1966), and 
is based in particular upon a formulation of Newling (1977). Although the method 
leads to a solution of the potential equation for compressible flow, it is limited, in 
its application, to flows that are subcritical. Examples are given in which the method 
is applied to flow past single bodies and, more importantly, to compressible flow past 
multi-element aerofoil configurations. 

In the present paper we address ourselves to the problem of finding conservative 
full potential solutions for transonic flow past multi-element aerofoil configurations. 
In  order to avoid the difficulties of mesh generation, which are encountered if a 
finite-difference method of solution is adopted for the whole of the flow field, we use 
a hybrid method of solution that exploits the panel method of Hill et al. (1986), and 
a finite-difference method due to Holst (1979) for supercritical flow. In outline the 
hybrid method is employed as follows. Within the region in which supercritical flow 
is known to occur, the finite-difference method of solution is adopted. Outside that 
region the compressible-flow panel method is used. At  a boundary between the regions 
in which the different methods are employed the solutions are appropriately matched. 
Since in practice our main concern is with high-lift configurations, we may expect 
the region of supercritical flow to be limited to a relatively small region on the slat. 

The plan of the paper is as follows. In $2 we introduce the governing equations, 
and outline in more schematic detail the hybrid method of solution. This is followed 
in $3 by a more detailed description of each of the compressible flow panel, and 
finite-difference methods. The hybrid method is then applied, in $4, first to flow past 
a single aerofoil in both sub- and supercritical flow conditions and then to a 
three-element aerofoil configuration. For the latter the flow becomes supercritical, 
with an attendant shock wave, over the slat. We compare our solutions for a single 

t Present address: Department of Civil Engineering, University College, Swansea, SA2 8PP, UK. 

9-2 



254 M .  G. Hill and N .  Riley 

aerofoil with solutions calculated from the method of Garabedian & Korn (1971), and 
for the three-element aerofoil with solutions obtained by a finite-element method due 
to King. 

2. Equations and solution scheme 
We are concerned in this paper with the steady two-dimensional flow of an inviscid 

compressible fluid past one, or more particularly two or more, shapes of aerodynamic 
interest. We assume that the fluid is a perfect gas and that the flow is both irrotational 
and isentropic. 

We take the free-stream speed U,,  density at infinity p,, and a typical dimension 
I of a body in the flow field as reference velocity, density and length respectively. Then, 
with 1) = ( u , v )  = VO, the equation satisfied by the potential Qi is, in a Cartesian 
coordinate system (x, y), 

;(Pg)+$(Pg) = o .  

The Bernoulli equation, which is an energy integral of the governing equations, may 
be written as 

(2.2) p = (1 ++(r- 1)  Mf(1 - q z ) } l ' ( y - l )  = B(O), 

where q2 = u2 + v2 = 1 VO I 2 ,  M ,  = ZJl/al, y is the ratio of the specific heats and use 
has been made of the isentropic relation a2 = py-', where a is the speed of sound made 
dimensionless with its value a,  at infinity. Equations (2.1) and (2.2) are to be solved 
subject to the boundary conditions 

@ - x  as(xI+co, V O . n = O  onC, (2.3a, b )  

where we have assumed that the flow at infinity is parallel to the x-axis, and we have 
denoted by C an internal boundary whose unit normal is n. Kutta conditions are 
applied at  the sharp trailing edges of each of the aerodynamic shapes that bound the 
flow internally to determine the circulation about each shape, and so render the 
solution unique. 

Since (2.1)-(2.3) are nonlinear, iterative schemes are employed in their solution. 
Our method of solution is a hybrid method, designed specifically to handle supercritical 
flow past aerodynamic configurations with two or more elements. It employs two 
solution methods and involves an iteration between them, in addition to the iterations 
demanded by the nonlinearity of (2.1)-(2.3). The two solution methods are (i) a 
compressible-flow panel method (CPM) proposed recently by Hill et al. (1986), and 
(ii) a finite-difference method (FDM) due to Holst (1979) and Flores et al. (1984). The 
CPM is based upon a successful panel method for incompressible flow due to Newling 
(1977), and has been used by the present authors to study the compressible flow past 
multi-element aerofoil configurations, but in subcritical flow conditions only (to which 
it is restricted). The FDM is a fully conservative method and is based upon a 
non-orthogonal coordinate system. For the type of flow under consideration there are 
potential benefits to be gained from the use of a non-orthogonal computational mesh, 
as described in $3.2, although to be sure we have not taken advantage of these. We 
outline the CPM and FDM in $3; for further details of the methods reference may 
be made to the papers referenced above. In the remainder of this section we describe 
the manner in which we implement our hybrid scheme. 

As we have already made clear, the CPM is only appropriate when the flow 
conditions are subcritical, and of itself cannot handle supercritical flows. It can be 
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FIQURE 1. A schematic representation of the computational domains. 

used, therefore, only for those parts of the flow field in which the flow remains 
subsonic. Consider figure 1. Here we show an aerofoil shape A whose bounding curve 
is denoted by C,, at which the boundary condition (2.3b) is to be applied. The curve 
C,, together with part of C,: bounds a region S in which supercritical flow occurs. 
The choice of the contour C, IS not unique, but certain requirements must be satisfied 
by it. The most obvious of these is that it does indeed include the whole of the region 
of supersonic flow, and this is most easily tested by monitoring the local Mach number 
on C,. The other requirement that is important for the succesful application of the 
panel method is that where C, and C, meet, their slopes also coincide. Failure to meet 
this requirement resulted in numerical oscillations at the junction of C, and C,. For 
the examples that we discuss in $4, the dimensions of the region S are up to almost 
50 % chord in length and of the order of the maximum aerofoil thickness in height. 
In  principle the CPM can be applied to the flow exterior to the region A + S provided 
that values of a@/an are known on C,. Next consider the region D + S  which is 
bounded by the curve C,, together with part of C,. Within this region, which includes 
the supercritical part of the flow, the FDM may be used provided that boundary 
conditions for (2.1) are available along C,. The missing boundary conditions for each 
method are provided by the solution from the other method in an iterative manner 
as follows. As a first approximation we assume that the flow is the undisturbed free 
stream. From this we are able to calculate values of a@/an on C,. Using these values, 
together with (2 .3) ,  we then calculate the flow exterior to the region A + S  using the 
CPM. From that solution the potential is not given directly, but can be calculated 
from the velocities to give @ along C,. With a@/an = 0 on C, the FDM may then 
be used to determine the solution for this mixed boundary-value problem within the 
region D + S, and from that solution we are able to estimate new values of a@/& 
on C, for use with the CPM, and so on. At each stage a check is made to ensure that 
subcritical flow conditions are maintained on C,. 

The method by which each of the CPM and FDM is implemented is outlined in 
$ 3 ;  further details of these methods may be found in Hill et al. (1986) and Flores et 
al. (1984) respectively. Results obtained by our hybrid method are discussed in $4. 

For a single aerofoil it  is not necessary to use other than the FDM, since a suitable 
computational grid may be established by, for example, mapping the flow field to 
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the inside of a circle to whose boundary the curve C,  transforms. Similarly, for a 
two-element configuration Suddhoo (1985) has shown that the flow field may be 
transformed to the annulus between two concentric circles, each boundary of which 
represents the boundary of one of the elements. As for the case of a single element, 
a polar grid is conveniently used for the computations. To generate a satisfactory 
computation grid for more than two elements in any configuration is a task that has 
not yet been satisfactorily carried out, and it is in such situations that the advantages 
of the present method become apparent. Alternative methods of solution to that 
proposed here for multi-element configurations are the finite-element method of 
D. A. King (1985 private communication, British Aerospace, Hatfield), with whose 
results we are able to make a comparison, and a field panel method due to Oskam 
(1985). In the latter, (2.1) is written in the form of Poisson’s equation and a 
boundary-integral approach is adopted that yields an expression for @ that includes 
a double integral of the source term. Using a finite-volume technique, the relationship 
between @ and the source term is also established, from the governing equation, a t  
field points in a region in which compressibility effects are most significant and beyond 
which the flow is assumed to be incompressible. If the double integral is also 
approximated numerically at the field points the source term may be evaluated and 
the solution completed using a panel method. 

3. Numerical methods 
In  this section we outline both the compressible panel method of Hill et al. (1986) 

and the finite-difference method of Flores et al. (1984). 

3.1. The compressible-$ow panel method 
The C P M  is based upon the highly successful panel method for incompressible flow 
of Newling (1977). For incompressible flow the fundamental solutions of (2.1) 
correspond to the potentials of a line source and a line vortex respectively, and the 
solution for @ is constructed as arising from distributions of such singularities over 
the bounding surfaces C. If the source and vortex strengths are denoted by a(q) and 
y(q)  respectively, where q is a point on the boundary, then, following an assumption 
about their symmetry, c-r and y are determined by applying the condition for a@/an 
at the bounding surface. 

If we assume that the density is a known function in (2.1), then the analogue of 
Newling’s method for that equation leads to 

for the z-component of velocity, with a similar expression for the y-component, where 
p is a point in the flow field, so that p 4= q, and GOO = x. If p lies on C then for the 
normal derivative of @ on C we have 

In (3.1) and (3.2), Y and 8 are the fundamental solutions of (2.1) for a given density 
distribution p(z, y ) ,  and ere the analogues of the source and vortex solutions for 
incompressible flow. They are related to a complex function F as 

F =  pi(Y+i8), (3.3) 
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which itself may be written as 

F(z ,  w ; 6,8) = log (Z - 6) + G(z, w ; 6, a), (3.4) 

where z = x+iy, w = x-iy, with (2, y) now representing the analytic continuation 
of the real variables into the complex plane, and (a,& representing the point p in 
(3.2). G satisfies the Volterra integral equation 

G(z ,w;6 ,8 )  = jaw$-:% log (t  -6) dTdt+ 1 Jaw$-:% G(t,  7; 6,8) d7 dt, (3.5) 

where a caret denotes the analytic continuation. The derivation and solution of the 
integral equation (3.5), and hence the determination of Y and 8, is discussed in detail 
by Hill et al. (1986), and in a more general context by Hill & Porter (1985). Before 
we discuss the solution of the Fredholm integral equation (3.2) for the distributions 
u and y ,  we note that (3.1) and (3.2) are appropriate to a given density distribution 
p. Of course, p is not determined a priori, and the variables @, p must satisfy both 
(2.1) and (2.2) simultaneously. To achieve this we proceed iteratively as follows. 
Initially we set p = 1 and determine Q and y from (3.2) in the manner to be described 
below. The velocity components a@/ax, a@/ay are then determined as in (3.1), which 
enables us to obtain a new estimate of p from (2.2), from which updated values of 
Y and 8 may be obtained from (3.3)-(3.5). New values of u and y may then be 
obtained from (3.2), and so on. In the solutions given by Hill et al., for subcriticsl 
flow past multi-element configurations, seven such iterative cycles achieved conver- 
gence. It remains to indicate how (3.2) is solved for the distributions u and y. 

The boundary of the domain, C, which may consist of one or more elements and 
which does not necessarily coincide everywhere with a physical boundary, as for 
example C, in figure 1, is discretized so that it is represented by a sequence of 
boundary elements or ‘panels ’. We choose these panels as straight-line segments, and, 
with reference to an aerodynamic shape, we represent each of the upper and lower 
surfaces by N such panels, making 2N panels in all. We identify corresponding panels 
on the upper and lower surfaces by dividing the straight line joining the nose and 
the trailing edge into N, not necessarily equal, segments and take as our panels the 
linear projections of these onto C. The source strength is taken as piecewise constant 
with u = ui on the ith panel, and the vorticity distribution is taken to be a continuous 
piecewise linear function. We denote by yi-l and yi the vortex strengths at each end 
of the ith panel, and if a sharp trailing edge corresponds to i = 0 we set yo = 0 to 
satisfy the Kutta condition. The integrals in (3.2) are now evaluated numerically over 
all the panels into which C has been divided. The left-hand side of (3.2) is evaluated 
from (2.3b) on C,, and the solution obtained from the FDM on C,. There result 2N 
equations that are linear in the 4N unknown quantities cri and yr .  To make the system 
determinate, the source and vortex densities on opposite panels on the upper and 
lower surfaces are prescribed to be equal. The 2N unknown quantities may then be 
determined by standard methods from the 2N equations. The iterations that yield 
@ and p from the CPM are not continued to the point at which convergence is achieved 
at each stage of the overall iterative cycle. In  practice, about seven iterations have 
been completed before attention has been turned to the region D + S ,  in which the 
solution is obtained by the FDM that we now describe. 

3.2. The finite-difference met?& 
The finite-difference method that we have adopted is due to Holst (1979) and Flores 
et aZ. (1984); a key feature of this method is the use of a non-orthogonal coordinate 
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system (E, 7). Here (see figure 1) we choose the aerofoil surface as the line 7 = 0 with 
lines parallel to this as 7 = constant. Parallel straight lines intersecting 7 = 0 are 
taken as the lines 6 = constant. The angle that these make with some fixed direction 
may be varied, which may be advantageous in some situations. For example in a 
multi-element configuration, if supercritical flow occurs at the leading edge of the 
main aerofoil then it is important to ensure that the trailing edge of the slat does 
not intrude into the computational domain D + S. This can be achieved by suitably 
aligning the straight lines 6 = constant. (In fact none of the examples that we present 
in $4 exhibit this feature.) If (2, y") denote some arbitrary rectangular coordinates with 
the aerofoil surface given by y" =f(?) then we take 

6 = ( Z - P o ) / &  = { i j - f ( Z ) } / L  (3.6) 

In terms of these new coordinates we may write (2.1) as 

(3.7) 

(3.8) 

where U =  A , @ 5 + A 2 @ , ,  V =  A 2 @ E + A , @ , ,  

A ,  = ti+[:, 
A ,  = 7; + T,$, 

A2 = 62%+6&, 

J = 6 2 7 j - - 6 j 7 2 ,  

and a subscript variable denotes differentiation with respect to that variable. For the 
finite-difference method of Holst (1979), which we outline now, we use a subscript 
notation such that (i ,j)  denotes the point whose coordinates are (i6&$7), and we 
take 66 = 67. Holst approximates (3.7) as 

(3.10) 

are second-order, and 

(3.12) 

where M is the local Mach number and M ,  is a constant. Following Jameson (1979), 
we take M ,  = 0.9 in our calculations. The boundary condition (2.3b) now becomes 

(3.13) @ --A@, a t y = O .  

For a given density distribution the finite-difference equations derived from (3.9) 
(using (3.8)) and (3.13), using second-order accurate differences, together with (2.3a) 
applied at  a large but finite distance, are solved using a standard SOR method. The 
solution may then be used in (2.2) to update the density, and such an iterative 

A 
E -  A ,  
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procedure continued until a satisfactorily converged solution is realized. (For further 
details of the method see Holst (1979) and Flores et al. (1984).) 

Our method is based firmly upon that of Holst outlined above, with the following 
three differences. First, we have used fourth-order-accurate difference schemes 
throughout, rather than those of second order adopted by Holst in order to improve 
the accuracy of the solution. Secondly, our computational domain, D + S  in figure 
1, is much smaller than Holst’s, so that the freestream condition cannot be applied 
at the outer boundary. Thus, in addition to the boundary condition (2.3b) on C,, we 
require a condition on C,. This we have chosen to be the value of @ calculated from 
the CPM; it is derived by integrating the component of velocity parallel to the 
appropriate coordinate line along the length of C,. Thirdly, we have taken M ,  =I= 1 
(Jameson 1979) in (3.12)’ whereas Holst chooses M, = 1. Like Holst, then, we have 
a mixed boundary-value problem, but in a simply connected domain that, with an 
equal number of grid points in each of the coordinate directions, is a square in 
(6,  r)-space. The relationship between C,  and C, (see figure 1 )  in our procedure is such 
that C,  intersects C, between 2 and 5 grid points in from C, at each end. 

4. Examples 
In this section we present examples that are calculated using the techniques that 

we have described above. 
Although our hybrid technique has been developed to calculate the flow past 

multi-element configurations, we consider first the flow past a single aerofoil, namely 
the NACA 0012. Solutions using the method of Garabedian t Korn (1971, hereinafter 
referred to as GK) have kindly been made available to the present authors by 
R. C. Lock. The computational domain for these calculations is the interior of a circle 
to which the flow field is mapped. The discretization leads to 160 equally spaced grid 
points on the circle, which corresponds to the aerofoil, and the transformation gives 
a higher density of points at the leading and trailing edges of the aerofoil than 
elsewhere. For the CPM we have taken 160 panels whose endpoints coincide on C,  
with the gridpoints of the GK calculation. The panels on C,  are such that when 
projected onto C,  they coincide with the panels we have defined there. 

The first case we consider is a case for which flow conditions are almost critical, 
and for which a solution using the CPM alone has already been presented by Hill et 
al. (1986). Within the domain D + S  of figure 1 we have worked with two grid sizes 
and have achieved this in the following manner. The coarse grid has 80 x 80 grid points 
extending along 50 % of the aerofoil chord from the leading edge, with the ‘bubble ’ 
S extending along 20 % of the chord from a point two mesh lengths away from the 
leading edge, and with a thickness equal to that of the maximum thickness of the 
aerofoil. The fine mesh also has 80 x 80 grid points, but now this extends along only 
20% of the chord from the leading edge, with the bubble S, now of thickness half 
that of the maximum aerofoil thickness, extending along 10 %. In  the iterative cycles, 
using the two methods, we have employed 7 iterations each time the CPM is used, 
while for the FDM we have after each 10 iterations monitored the maximum 
difference between the solutions and terminated these iterations when that difference 
is less than 5 % of the computed quantity. To achieve the graphical accuracy of figure 
2 required five overall iterative cycles. This figure compares the solution obtained 
in the manner described above with the GK solution over 10 % of the chord, and it 
is apparent that closer agreement is achieved with the finer mesh. The overall lift 
coefficient differs from that of the GK solution by 3.5 % for the coarse-mesh solution, 
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X I X C  

FIGURE 2. The pressure distribution over the upper surface, and close to the leading edge, of the 
NACA 0012 aerofoil section for M, = 0.3, and incidence a = 10': ---, coarse-mesh solution; 
-, fine-mesh solution; 0, Garabedian & Korn (1971) solution. The chord length is denoted by 
zc in all our examples. 

and 2.6% for the fine mesh. It is also worth recording that the fine-mesh solution 
is indistinguishable from that using the CPM alone, with 160 panels, as reported by 
Hill et al. (1986). 

The second example for which we present results is also based on the NACA 0012 
aerofoil section, but now in supercritical flow conditions. The computational domain 
D + S of figure 1 and the bubble S are chosen as for the fine-mesh solution described 
above, except that, while we have continued to use 160 panels, we have used three 
grid sizes, namely 40 x 40, 60 x 60 and 80 x 80, within D+S. The iterative method 
of solution that was described for the subcritical-flow example was again employed, 
but now the overall iterative cycles were extended until accuracy to four significant 
figures was achieved. This required some fifteen overall iterative cycles. We have 
again made a comparison with a solution obtained by the method of Garabedian & 
Korn (1971), and for the 80 x 80 grid we record a difference of 3.9% in the lift 
coefficient between the two solutions. Figure 3 shows detail of the pressure distribution 
in the neighbourhood of the shock wave, where we have included the results from 
all three of our computational meshes together with the solution from the GK method. 
We see that our solutions predict a shock position and strength that are in broad 
agreement with the GK solution, but that, as the mesh size decreases, our calculations 
yield a better resolution of the shock wave, as we might expect. 



Transonic flow past multi-element aerofoils 26 1 

I I I I I I 1 1 

x / x ,  

FIQURE 3. The shock wave on the NACA 0012 aerofoil section for Nl = 0.5, a = 6". -, 
Garabedian L Korn (1971); --- , present method with 40x40 mesh; -.- , 6 0 x 6 0 ;  

, 80 x 80. -..- 

FIGURE 4. The Suddhoo (1985) three-element aerofoil. 

The above calculations for a single aerofoil were carried out to demonstrate that 
the hybrid method described in $53 and 4 can yield accurate solutions in high 
subsonic, and transonic, flow conditions. Just as in the subcritical-flow calculations 
of Hill et al. (1986), there is no difficulty in extending the method to multi-element 
configurations, apart from the obvious increase in computational time that is required 
as the number of elements increases. 

As an example of the method applied to a multi-element configuration we consider 
the flow past the three-element configuration shown in figure 4. This configuration 
has been devised by Suddhoo (1985) from a conformal transformation of three circles, 
and an exact solution is given by him for incompressible flow. We present solutions 
here, in figures 5 and 6, for two freestream Mach numbers, namely MI = 0.22 and 
0.2 respectively. For the latter case, supercritical flow conditions are just achieved 
on the slat, while for the higher Mach number a fairly strong shock wave forms on 
the slat, as is clearly seen in figure 5 ( a ) .  In  these calculations we have deployed 60 
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FIGURE 5. Pressure distribution over the three-element aerofoil for M ,  = 0.22, a = 20". (a) The slat: 
-, King (1985, private communication); ---, present method with 80 panels on the slat. 
(b) The main aerofoil. ( c )  The flap. 

panels on the main aerofoil and flap, with 80 on the slat. The computational domain 
D+ S now extends over 65 % of the slat, with S extending over 45 % of i t  and of 
thickness equal to that of the maximum slat thickness. An 80 x 80 computational 
mesh is used within D + S. The method of implementation of the CPM and FDM is 
as described above for the case of a single aerofoil. To achieve the accuracy 
represented by figures 5 and 6, twenty overall iterative cycles were employed. For 
this example we have been able to  make a comparison with results kindly made 
available to  us by D. A. King using a finite-element method that is currently under 
development. For the particular example under consideration, 8190 computational 
nodes have been used with 64 on the slat, 122 on the main aerofoil and 74 on the 
flap. On the main aerofoil and flap the results obtained by the finite-element method 
are indistinguishable, except for small differences close to the suction peak, from those 
shown in figures 5 ( b ,  c) derived from the present method. On the slat, however (see 
figure 5 ( a ) ) ,  there are significant differences. Both methods predict the same 
shock-wave location, defined as the suction peak. However, the finite-element method 
gives a less clearly defined shock wave than the present method, which suggests that  
our computational mesh in D + S  is sufficiently fine, while the mesh for the 
finite-element method is not fine enough, to  resolve the shock adequately. The 
difference in suction peak may have several sources. We first note that the difference 
persists throughout the Mach-number range, where for subcritical flow our results 
are derived by the CPM alone (Hill et al. 1986). In  the limiting case of incompressible 
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-c, 
1( 

FIGURE 6. Pressure distribution over the slat of the three-element aerofoil for M ,  = 0.2, 
a = 20': - , King (1985); ---, present method with 80 panels. 

flow the peak suction is slightly overestimated by the finite-element method and 
underestimated by the panel method, when compared with the exact result due to 
Suddhoo (1985). It has been demonstrated by Hill et al. (1986) that for the CPM, 
sufficiently h e  panelling is required if high suction peaks are to be accurately 
resolved, and this is known to be a feature of the method as originally devised in its 
incompressible form. For example, with the NACA 0012 aerofoil at incidence a = lo", 
and critical Mach number, the peak suction falls short of that predicted by the method 
of Garabedian & Korn (1971) by 21.5% when 80 panels are used and by only 8.5 % 
when 160 panels are used. For the case under consideration the peak suction is less 
than that predicted by the finite-element method by 14 % . For the lower freestream 
Mach number, dl, = 0.2, the same differences in pressure distribution are in evidence 
in figure 6. 

All the results presented above have been obtained on a VAX 11/780 computer 
at the University of East Anglia. 

5. Conclusions 
In this paper we have devised a hybrid method of solution for transonic flow past 

multi-element aerofoil configurations. The method of solution is based upon a 
compressible-flow panel method for subcritical regions of flow, and a finite-difference 
method for those parts of the flow field 'that become supercritical. The solutions from 
the different flow regimes are matched at a common boundary between them. The 
solutions that are obtained in this way are exact in the sense that no approximations, 
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other than numerical approximations, are made to the governing equations (2.1) and 
(2.2). The method is applied to a single-element aerofoil, and to a three-element 
aerofoil, and comparisons that are made with other available solutions demonstrate 
the effectiveness of the method. There is, in principle, no limitation upon the number 
of elements that may be included in a configuration. 

Financial support for this project from SERC, within the framework of the 
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